PG-AS-417 MMSS-11

P.G. DEGREE EXAMINATION — JULY, 2022.

Mathematics

(From CY - 2020 onwards)

First Semester

ABSTRACT ALGEBRA

Time : 3 hours

Maximum marks : 70

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE of the following each in 300 words.

- 1. Show that N(a), normalizer of an element a in a group G, is a subgroup of G.
- 2. Let G be a group and suppose that G is the internal direct product of $N_1, N_2, ..., N_n$. Let $T = N_1 \times N_2 \times ... \times N_n$. Show that G and T are isomorphic.
- 3. State and prove the Eisenstein criterion.

- 4. Define fixed field of a group and show that it is a subfield of K.
- 5. Show that S_n is not solvable for $n \ge 5$.
- 6. If G is a finite group, p is a prime and pⁿ | o(G) but pⁿ⁻¹o(G), then show that any two subgroups of G of order pⁿ are conjugate.
- 7. If f(x), g(x) are two nonzero elements of F[x], then show that deg(f(x)g(x)) = deg f(x) + deg g(x).
- 8. Show that for every prime p and every positive integer m there exists a field having p^m elements.

SECTION B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE of the following each in 1000 words.

- 9. State and prove Cauchy's theorem.
- 10. Show that two abelian groups of order p^n are isomorphic if and only if they have the same invariants.
- 11. Show that any two splitting fields of the same polynomial over a given field F are isomorphic by an isomorphism leaving every element of F fixed.

 $\mathbf{2}$

- 12. If F is of characteristic 0 and if a, b are algebraic over F, then show that there exists an element $c \in F(a, b)$ such that F(a, b) = F(c).
- 13. State and prove the Wedderburn's theorem on finite division rings.

3

PG-AS-417

PG-AS-418 MMSS-12

P.G. DEGREE EXAMINATION — JULY 2022.

Mathematics

(From CY – 2020 Onwards)

First Semester

ADVANCED CALCULUS

Time : 3 hours

Maximum marks : 70

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE of the following.

- 1. Using basic mean value theorem, find the numbers θ_1 and θ_2 if $f(x,y) = x^2 + 3xy + y^2$, a = b = 0, $\Delta x = 1, \Delta y = -1$.
- 2. If u = x + y + z, uv = y + zuvw = z, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{1}{u^2 v}.$

- 3. Divide 24 into three positive numbers x, y, z such that xy^2z^3 is maximum.
- 4. Evaluate by Green's theorem $\int_{s} e^{-x} (\sin y \, dx + \cos y \, dy), \text{ where } S \text{ is the rectangle}$ with verties (0, 0), (π , 0), $\left(\pi, \frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right)$.
- 5. Evaluate $\iint (y-x)dxdy$ over the region R_{xy} in the *xy*-palne bounded by the straight lines y = x 3, y = x + 1, 3y + x = 5, 3y + x = 7.
- 6. Find $\frac{du}{dx}$ if $u = \sin(x^2 + y^2)$ where $a^2x^2 + b^2y^2 = c^2$.
- 7. Show that the function $f(x, y, z) = x^2 + y^2 + 3z^2 - xy + 2xz + yz$ has a relative minimum at (0,0,0).
- 8. Evaluate the integral $\int_{\Gamma} x dx + y dy + z dz$ where Γ is the circle $x^2 + y^2 + z^2 = a^2, z = 0$.
 - 2 PG-AS-418

SECTION B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE of the following.

9. If
$$u = \log\left(\frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}}\right)$$
, then prove that

(a) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{3}{2}$, and

(b)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{3}{2}$$

- 10. State and prove the inverse function theorem.
- 11. State and prove Taylor's theorem for functions of two variables.
- 12. Verify Gauss theorem for $\iint_{s} (4x \cos \alpha 2y^2 \cos \beta + z^2 \cos \gamma) dS$, where S is the region bounded by $x^2 + y^2 = 4$, z = 0, z = 3 and α, β, γ are the angle between the exterior normal to the positive x-axis, y-axis and z-axis respectively.
- 13. Verify Stroke's theorem for the integral $\int_{\Gamma} y dx + z dy + x dz$, where Γ is the boundary of the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$.

3

PG-AS-419 MMSS-13

P.G. DEGREE EXAMINATION – JULY 2022.

Mathematics

(From CY – 2020 Onwards)

First Semester

REAL ANALYSIS

Time : 3 hours

Maximum marks: 70

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE of the following.

- 1. Show that continuous image of a compact metric space is compact.
- 2. Does the limit of the integral is equal to the integral of the limit? Justify.
- 3. Show that there exists a non-measurable set.
- 4. State and prove the Lebesgue's monotone convergence theorem.

- 5. State:
 - (a) Lebesgue decomposition theorem.
 - (b) Riesz representation for L^1 .
- 6. Let $f \in R$ on [a, b] and if there is a differentiable function F on [a, b] such that F' = f, then show that $\int_{a}^{b} f(x)dx = F(b) F(a)$.
- 7. Show that every interval is measurable.
- 8. Show that $\int_{0}^{\infty} \frac{dx}{\left(1+\frac{x}{n}\right)^{n} \frac{1}{x^{n}}} dx = 1.$

SECTION B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE of the following.

- 9. Let f be a continuous mapping of a compact metric space X into a metric space Y. Show that f is uniformly continuous.
- 10. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f_n'\}$ converges uniformly on [a, b], then show that $\{f_n\}$ converges uniformly on [a, b], to a function f, and

 $\mathbf{2}$

$$f'(x) = \lim_{n \to \infty} f'(x) (a \le x \le b).$$

- 11. Show that the following statements are equivalent.
 - (a) *f* is a measurable function.
 - (b) $\forall \alpha, [x: f(x) \ge \alpha]$ is measurable.
 - (c) $\forall \alpha, [x: f(x) < \alpha]$ is measurable.
 - (d) $\forall \alpha, [x: f(x) \le \alpha]$ is measurable.
- 12. State and prove the Lebesgue's dominated convergence theorem.

3

13. State and prove the Radon-Nikodym theorem.

PG-AS-420

MMSSE-1

P.G. DEGREE EXAMINATION - JULY, 2022.

Mathematics

(From CY - 2020 onwards)

First Semester

DIFFERENTIAL GEOMETRY

Time : 3 hours

Maximum marks: 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions each in 300 words.

All questions carry equal marks.

- 1. State and prove Serret Frenet formulae theorem.
- 2. If θ is the angle at the point (u,v) between the two directions given by

 $Pdu^2 + 2Qdudv + Rdv^2 = 0$ then prove that $\tan \theta = \frac{2H(Q^2 - PR)^{\frac{1}{2}}}{ER - 2FQ + GP}.$

- 3. Prove that, on the general surface, a necessary and sufficient condition that the curve v = c be geodesic is $EE_2 + FE_1 2EF_1 = 0$.
- 4. If K_n is the normal curvature of a curve at a point on a surface then prove that $K_n = \frac{Ldu^2 + 2Mdudv + Ndv^2}{E du^2 + 2Fdudv + Gdv^2}$ where *E*, *F* and *G*

are first fundamental coefficients and

 $L = N.r_{11}, \ M = N.r_{12}, \ N = N.r_{22}.$

- 5. Prove that the only compact surfaces whose Gaussian curvature is positive and mean curvature constant are sphere.
- 6. Find the length of the curve given as the intersection of the surfaces

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \ x = a \cos h\left(\frac{z}{a}\right) \text{ from the point } (a, 0,0)$$
to the point (x, y, z) .

to the point (x, y, z).

- 7. Derive Canonical geodesic equations.
- 8. Prove that the principal curvature are given by the roots of the equation $\kappa^2 (EG - F^2) - \kappa (En + GL - 2FM) + LN - M^2 = 0$.

2 PG-AS-420

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions each in 1,000 words.

All questions carries equal marks.

- 9. State and prove Fundamental existence theorem for space curves.
- 10. Prove that the first fundamental form of a surface is a positive definite quadratic form in du, dv.
- 11. Prove that u = u(t), v = v(t) on a surface $\vec{r} = \vec{r}(u,v)$ is a geodesic if and only if the principal normal at every point on the curve is normal to the surface.

3

- 12. State and prove Rodrique's formula theorem.
- 13. State and prove Hilbert's theorem.

PG-AS-421 MMSSE-2

P.G. DEGREE EXAMINATION — JULY, 2022.

Mathematics

(From CY – 2020 Onwards)

First Semester

PROGRAMMING in C++

Time: 3 hours

Maximum marks : 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions. Each in 300 words

- 1. Explain the applications of OOPs.
- 2. Write a C++ program to find maximum of two numbers using inline functions.
- 3. What is copy constructor? When it is used implicitly for what purpose?
- 4. Give a programming example that overloads = = operator with its use.
- 5. Show the use of multiple inheritance with the help of proper programming example.

- 6. What do you mean by type conversion? Give an example of basic to object conversion
- 7. Explain the various operators that are available on C++.
- 8. Write a program in C++ that checks whether the given string is palindrome or not.

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions. Each in 1000 words

- 9. Explain with an example the control statements in C++.
- 10. What is a friend function? What are the merits and demerits of using the friend function?
- 11. What is Static Member Functions? What are the features of static data member?
- 12. (a) What is operator overloading? List out the rules to overload a binary operator.
 - (b) Write C++ program to add two vectors using + operator overloading.
- 13. Write a C++ program demonstrating use of the pure virtual function with the use of base and derived classes

2

PG-AS-422 MMSS-21

P.G. DEGREE EXAMINATION – JULY, 2022.

Mathematics

(From CY – 2020 onwards)

Second Semester

APPLIED MECHANICS

Time : 3 hours

Maximum marks: 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions each in 300 words.

All questions carries equal marks.

- 1. Find the kinetic energy of a rigid body with a fixed point.
- 2. Prove that the rate of change of the angular momentum of a system about a point, either fixed or moving with the mass center, is equal to the total moment of the external forces about that point.
- 3. Discuss cuspidal motion of a top.

- 4. Derive Lagrange's equations motion for Implusive motion.
- 5. Explain poisson brackets.
- 6. A rectangular plate spins with constant angular velocity W about a diagonal. Find the couple which must act on the plate in order to maintain this motion.
- 7. Explain the Bilinear invariant.
- 8. Explain the motion of a rigid body with a fixed point under no forces using analytic method.

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions each in 1000 words.

All questions carries equal marks.

- 9. Find the angular momentum of a rigid body.
- 10. Explain the general motion of a rigid body in methods of dynamics in space.

2

- 11. Discuss the general motion of a top.
- 12. Derive Hamilton's equations of motion.
- 13. Explain Hamilton's principle.

PG-AS-423 MMSS-22

P.G. DEGREE EXAMINATION — JULY 2022.

Mathematics

(From CY – 2020 onwards)

Second Semester

COMPLEX ANALYSIS

Time : 3 hours

Maximum marks : 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

All questions carries equal marks.

- 1. State and prove Local Mapping theorem.
- 2. State and prove Rouche's Theorem.
- 3. State and prove Mittag-Leffler theorem.
- 4. State and prove Harnack's principle.

- 5. Show that non constant elliptic function has equally many poles as it has zeros.
- 6. If u_1 and u_2 are harmonic functions in a region Ω then prove that $\int_{\gamma} u_1 * du_2 - u_2 * du_1 = 0$ for every cycle γ which is homologous to zero in Ω .
- 7. State and prove Arzela's Theorem.
- 8. State and prove Cauchy's Integral formula.

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions.

All questions carries equal marks.

9. Suppose the $\varphi(\zeta)$ is continuous on the arc γ . Then prove that the function

$$\begin{split} F_n(z) = &\int_{\gamma} \frac{\varphi(\zeta) \, d\zeta}{(\zeta - z)^n} \quad \text{is analytic in each of the} \\ \text{regions determined by } \gamma \,, \, \text{and its derivative is} \\ F_n'(z) = &n F_{n+1}(z) \end{split}$$

- 10. If pdx + qdy is locally exact in Ω then prove that $\int_{\gamma} pdx + qdy = 0$ for every cycle $\gamma \sim 0$ in Ω .
 - 2 **PG-AS-423**

11. Derive

- (a) Jensen's formula and
- (b) Poisson-Jensen formula.
- 12. State and prove the Riemann mapping theorem.
- 13. State and prove existence and uniqueness theorem on canonical basis.

3

PG-AS-424 MMSS-23

P.G. DEGREE EXAMINATION — JULY 2022.

Mathematics

(From CY – 2020 onwards)

First Year – Second Semester

LINEAR ALGEBRA

Time : 3 hours

Maximum marks : 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions in 300 words.

All Questions carries equal marks

 Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. Suppose that V is finite-dimensional then prove that

 $rank(T)+nullity(T)=\dim V$

2. Let F be a field and a. be a linear algebra with identity over F. Suppose f and g are polynomials over F, α is an element of a and that c belongs to F. Then prove that

(a)
$$(cf+g)(\alpha)=cf(\alpha)+g(\alpha)$$

(b)
$$(f g)(\alpha) = f(\alpha)g(\alpha)$$

- 3. Let T be a linear operator on an *n*-dimensional vector space V. Prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities.
- 4. Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is diagonalisable if and only if the minimal polynomial for T has the form $p = (x-c_1)...(x-c_k)$ where $c_1,...,c_k$ are distinct elements of V.
- 5. Let F be a field and let B be an $n \times n$ matrix over F. Then prove that B is similar over the field F to one and only one matrix which is in the rational form.
- 6. Let V be a vector space over the field F; Let U,T_1 and T_2 be linear operators on V; Then prove that

 $U(T_1 + T_2) = UT_1 + UT_2$ and $(T_1 + T_2)U = T_1U + T_1U$

7. Let F be a field of characteristic zero and f is polynomial over F with deg $f \le n$. Then prove that the scalar c is a root of f of multiplicity r if and only if

$$\begin{pmatrix} D^k f \end{pmatrix} (c) = 0, 0 \le k \le r - 1 \\ \begin{pmatrix} D^k f \end{pmatrix} (c) \ne 0$$

8. Let W be an invariant subspace for T. Prove that the characteristic polynomial for the restriction operator T_w divides the characteristic polynomial for T and the minimal polynomial for T_w divides the minimal polynomial for T.

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE questions in 1000 words.

All Questions carries equal marks.

- 9. Let V be an *n*-dimensional vector space over the field F. and let W be an m-dimensional vector space F. Then prove that the space L(V,W) is finite-dimensional and has dimension mn.
- 10. State and prove Taylors formula theorem.
- 11. State and prove Caylay-Hamilton theorem.



- 12. Let \mathcal{F} be a commuting family of triangulable lineaer operators on V. Let W be a proper subspace of V which is invariant under \mathcal{F} . Then prove that there exist a vector α in V such that
 - (a) α is not in W
 - (b) for each T in \mathcal{F} , the vector T_{α} is in the subspace spanned by α and W.
- 13. State and prove that Cyclic Decomposition theorem.

4

PG-AS-424

PG-AS-425 MMSSE-3

P.G. DEGREE EXAMINATION — JULY 2022.

Mathematics

(From CY - 2020 onwards)

Second Semester

PARTIAL DIFFERENTIAL EQUATIONS

Time : 3 hours

Maximum marks : 70

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE of the following.

- 1. Form a partial differential equation by elimination f from $z = xy + f(x^2 + y^2 + z^2)$.
- 2. Classify the following partial differential equations.

(a)
$$\frac{\partial^2 u}{\partial x^2} + 4 \left(\frac{\partial^2 u}{\partial x \partial y} \right) + 4 \frac{\partial^2 u}{\partial y^2} = 0$$

(b)
$$xyr - (x^2 - y^2)s - xyt + py - qx = 2(x^2 - y^2)$$

- 3. Show that the family of right circular cones $x^2 + y^2 = cz^2$, where c is a parameter, forms a set of equipotential services.
- 4. Obtain d'Alembert's solution of the one-dimensional wave equation.
- 5. Find the temperature in a sphere of radius a when its surface is maintained at zero temperature and its initial temperature is $f(r, \theta)$
- 6. Find the general solution of the differential equation $x^2 \frac{\partial z}{\partial x} y^2 \frac{\partial z}{\partial y} = (x+y)z$
- 7. Find a particular integral of the equation $(D^2 D')z = e^{x+y}$
- A rigid sphere of radius a is placed in a stream of fluid whose velocity of the undistributed state is
 V. Determine the velocity of the fluid at any point of the disturbed stream.

PART B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE of the following.

9. Prove that the general solution of the linear partial differential equation Pp + Qq = R is f(u,v) = 0 where f is an arbitrary function and $u(x, y, z) = c_1$ and $v(x, y, z) = c_2$ form a solution of the equations $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$

 $\mathbf{2}$

PG-	-AS-	425
PG-	-A3-	4420

- 10. Reduce the one-dimensional wave equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial^2 y} = 0$ to canonical form.
- 11. Discuss the Dirichlet's problem for a sphere and obtain its solution.
- 12. A tightly stretched string of length l has its ends fastened at x = 0 and x = l. The midpoint of the string is pulled to a height h and then released from rest in that position. Obtain an expression for the displacement of the string at any subsequent time.
- 13. Determine the Green's function for the thick plate of infinite radius bounded by the parallel planes z = 0 and z = a.

3

PG-AS-426 MMSSE -4

P.G. DEGREE EXAMINATION — JULY 2022.

Mathematics

(From CY – 2020 onwards)

Second Semester

MATHEMATICAL STATISTICS

Time : 3 hours

Maximum marks : 70

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE of the following each in 300 words.

1. If X_r and X_s are the r^{th} and s^{th} random variables of a random sample of size n drawn from the finite population $\{c_1, c_2, \dots, c_N\}$, then show that

$$\operatorname{cov}(X_r, X_s) = -\frac{o}{N-1}.$$

2. Suppose that 100 high-performance tires made by a certain manufacture lasted on the average 21,819 miles with a standard deviation of 1,295 miles. Test the null hypothesis $\mu = 22,000$ miles against the alternative hypothesis $\mu < 22,000$ miles at the 0.05 level of significance.

- 3. Obtain maximum likelihood estimates of the parameter α, β and σ
- 4. Write a short note on latin square design of experiments.
- 5. Let p = 2 and n = 1, and consider the random vector $X = \{X_1, X_2\}$. The discrete random variable X_1 have the following probability function. Find E(X).

 $x_1 -1 \ 0 \ 1$ $p_1(x_1) \ 0.3 \ 0.3 \ 0.4$

- 6. If X₁, X₂, ... X_n constitute a random sample of size *n* from Bernoulli population, then show that $\hat{\theta} = \frac{x_1 + x_2 + ... x_n}{n}$ is a sufficient estimator of the parameter θ .
- 7. A random sample of size *n* from a normal population with $\sigma^2 = 1$ is to be used to test the null hypothesis $\mu = \mu_0$ against the alternative hypothesis $\mu = \mu_1$, where $\mu > \mu_0$. Use the Neyman-Pearson lemma to find the most powerful critical region of size α .

8. If the joint density function of X_1 , X_2 and X_3 is given by

$$m(x_1, x_3) = \left\{ \left(x_1 + \frac{1}{2} \right) e^{-(x_3)}, \text{ for } 0 < x_1 < 1, x_3 > 0 \\ 0 \quad , \quad elsewhere \right. \right\}$$

Find the regression equation of X_2 on X_1 and X_3 .

SECTION B — $(3 \times 15 = 45 \text{ marks})$

Answer any THREE of the following each in 1000 words.

- 9. (a) In 16 test runs the gasoline consumption of an experimental engine had a standard of 2.2 gallons. Construct a 99% confidence interval for σ^2 , which measures the true variability of the gasoline consumption of the engine.
 - (b) Show that $Y = \frac{1}{6}(X_1 + 2X_2 + 3X_3)$ is not a sufficient estimator of the Bernoulli parameter θ .
- 10. State and prove the Neyman-Pearson Lemma.
- 11. Consider the following data on the number of hours that 10 persons studied for a French test and their scores on the test. Construct a 95% confidence interval for β .

Hours 9 4 10 14 4 7 12221 17Studied *x* Scores y31 58 65 73 3744 60 9121 84

12. A car rental agency, which uses 5 different brands of tyres in the process of deciding the brand of tyre to purchase as standard equipment for its fleet, finds that each of 5 tyres of each brand last the following number of kilometers (in thousands).

Tyre Brands					
А	В	С	D	Е	
36	46	35	45	41	
37	39	42	36	39	
42	35	37	39	37	
38	37	43	35	35	
47	43	38	32	38	

Test the hypothesis that the five tyre brands have almost the same average life.

13. Evaluate the $\rho = 2$ -variate normal density in terms of the individual parameters $\mu_1 = E(X_1), \mu_2 = E(X_2).\sigma_{11} = Var(X_1), \sigma_{22}$

4

$$= Var(X_2) and \,\rho_{12} = \frac{\sigma_{12}}{\sqrt{\sigma_{11}}\sqrt{\sigma_{22}}} = Corr(X_1, X_2).$$

PG-AS-426
